Rate-dependent shear bands in a shear-transformation-zone model of amorphous solids.

نویسندگان

  • M L Manning
  • E G Daub
  • J S Langer
  • J M Carlson
چکیده

We use shear transformation zone (STZ) theory to develop a deformation map for amorphous solids as a function of the imposed shear rate and initial material preparation. The STZ formulation incorporates recent simulation results [T. K. Haxton and A. J. Liu, Phys. Rev. Lett. 99, 195701 (2007)] showing that the steady state effective temperature is rate dependent. The resulting model predicts a wide range of deformation behavior as a function of the initial conditions, including homogeneous deformation, broad shear bands, extremely thin shear bands, and the onset of material failure. In particular, the STZ model predicts homogeneous deformation for shorter quench times and lower strain rates, and inhomogeneous deformation for longer quench times and higher strain rates. The location of the transition between homogeneous and inhomogeneous flow on the deformation map is determined in part by the steady state effective temperature, which is likely material dependent. This model also suggests that material failure occurs due to a runaway feedback between shear heating and the local disorder, and provides an explanation for the thickness of shear bands near the onset of material failure. We find that this model, which resolves dynamics within a sheared material interface, predicts that the stress weakens with strain much more rapidly than a similar model which uses a single state variable to specify internal dynamics on the interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable-amplitude oscillatory shear response of amorphous materials.

Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycl...

متن کامل

Microstructural shear localization in plastic deformation of amorphous solids.

The shear-transformation-zone (STZ) theory of plastic deformation predicts that sufficiently soft, noncrystalline solids are linearly unstable against forming periodic arrays of microstructural shear bands. A limited nonlinear analysis indicates that this instability may be the mechanism responsible for strain softening in both constant-stress and constant-strain-rate experiments. The analysis ...

متن کامل

Strain localization in a shear transformation zone model for amorphous solids.

We model a sheared disordered solid using the theory of shear transformation zones (STZs). In this mean-field continuum model the density of zones is governed by an effective temperature that approaches a steady state value as energy is dissipated. We compare the STZ model to simulations by Shi [Phys. Rev. Lett. 98, 185505 (2007)], finding that the model generates solutions that fit the data, e...

متن کامل

Effective temperature dynamics of shear bands in metallic glasses.

We study the plastic deformation of bulk metallic glasses with shear transformation zone (STZ) theory, a physical model for plasticity in amorphous systems, and compare it with experimental data. In STZ theory, plastic deformation occurs when localized regions rearrange due to applied stress and the density of these regions is determined by a dynamically evolving effective disorder temperature....

متن کامل

Strain-rate and temperature-driven transition in the shear transformation zone for two-dimensional amorphous solids.

We couple the recently developed self-learning metabasin escape algorithm, which enables efficient exploration of the potential energy surface (PES), with shear deformation to elucidate strain-rate and temperature effects on the shear transformation zone (STZ) characteristics in two-dimensional amorphous solids. In doing so, we report a transition in the STZ characteristics that can be obtained...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 79 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2009